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ABSTRACT

Statistical, dynamical, and statistical–dynamical hybridmodels have been developed in past decades for the

seasonal prediction of North Atlantic hurricane numbers. These models’ prediction skills show considerable

decadal variability, with particularly poor performance in the past few years. Here, environmental factors that

affect hurricane activities are reevaluated to develop a new statistical model for seasonal prediction by 1 June

of each year. The predictors include the April–May multivariate ENSO index (MEI) conditioned upon the

Atlantic multidecadal oscillation (AMO) index, the 3/2 power of the average zonal pseudo–wind stress across

the North Atlantic in May, and the average March–May tropical Atlantic sea surface temperature. When

compared to the actual number of hurricanes each year from 1950 to 2013, this model has a root-mean-square

error (RMSE) of 1.91 with a correlation coefficient of 0.71. It shows a 39% improvement in RMSE over a no-

skill metric (based on the 5-yr running mean of seasonal hurricane counts) for the period 2001–13. It also

outperforms three statistical–dynamical hybridmodels [CPC, Colorado StateUniversity (CSU), and Tropical

Storm Risk (TSR)] by more than 25% for the same period. Furthermore, two approaches are developed to

provide the uncertainty ranges around the predicted (deterministic) hurricane number per season that better

encompass the range of uncertainty than does the standardmethod of adding/subtracting a standard deviation

of the errors.

1. Introduction

Of all hazards afflicting the United States, including

both human caused and natural, Atlantic hurricanes are

among the most damaging. These storms are defined as

tropical cyclones in the North Atlantic basin (including

theGulf ofMexico andCaribbean Sea) whosemaximum

sustained wind speeds exceed 63 knots (kt; 1 kt 5
0.51m s21). From 1970 to 2002, it is estimated that these

hurricanes cost the United States, in 2002 values, $44

billion in damage (Zanetti et al. 2003, 34–35; Murnane

2004). That figure is much larger than the $17 billion

caused by earthquakes and the $24 billion in human-

caused disasters, which includes the events of 11 Sep-

tember 2001. Insurance firms, in particular, need to

monitor hurricane activity, as expensive natural disasters

can put great strain on the industry. For example, the

period 1991–94 was notable for costly natural disasters,

as nine smaller insurance companies became insolvent

(Changnon et al. 1997). Among these disasters is Hur-

ricane Andrew, the most financially damaging tropical

cyclone up to that point (Zanetti et al. 2003). More re-

cently, both Hurricanes Katrina and Sandy have pro-

duced enormous insured losses. When comparing all

three storms in terms of 2013 values, insured losses were

estimated at about $26 billion for Andrew, at $49 billion

for Katrina (http://www.iii.org/sites/default/files/docs/

pdf/hurricane_sandy_fact_file_2014.pdf), and at $35 bil-

lion for Sandy (Bevere et al. 2013). Firms can be better

prepared to deal with the aftermath of disastrous hurri-

canes by having better Atlantic hurricane activity pre-

dictions. Since insurance companies typically enter into

their reinsurance contracts long before the start of hur-

ricane season, they prefer to have hurricane forecasts by

1 January of each year, although skilled forecasts at any

lead time could prove potentially useful (Murnane 2004).

Since 1984, Colorado State University (CSU) has

produced Atlantic basin seasonal tropical activity fore-

casts, including the number of hurricanes (http://

hurricane.atmos.colostate.edu/). More recently, other

groups have also produced seasonal Atlantic hurricane

forecasts, which employ a wide variety of methods.

Examples include the linear statistical model employed
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by Gray et al. (1992) and the nonlinear statistical model

used by Elsner and Schmertmann (1993). A dynamical

model was used by Vitart et al. (2007), while hybrid

models were used by Vecchi et al. (2013) and Kim and

Webster (2010). Now, several private companies, gov-

ernment agencies, and universities produce predictions

of Atlantic hurricane numbers each year, both before

the season starts (including at the conclusion of the

previous year’s hurricane season) and partway through

the season.

Seasonal hurricane forecasting receives considerable

media attention prior to the Atlantic hurricane season,

and there is considerable criticism when the forecasts

are not accurate. Though the number of hurricanes is

not necessarily the best way to classify the activity of a

tropical cyclone season [a better metric might be Ac-

cumulated Cyclone Energy (Bell et al. 2000)], hurri-

canes receive considerable attention as they are the

most destructive component to the season. A blog by

the American Meteorological Society (AMS) men-

tioned a series of failed seasonal hurricane forecasts in

recent years by the NOAA Climate Prediction Center

(CPC), Colorado State University (CSU), and Tropical

Storm Risk (TSR) (http://blog.ametsoc.org/news/time-

to-heed-the-hurricane-season-forecast/). For example,

2012 was predicted to be a quiet year, yet it was active

(though the tropics were quiet as predicted, the extra-

tropics had highly anomalous activities). The 2013 sea-

son was predicted to be an active year, but the season

was actually very quiet. Vecchi and Villarini (2014) ar-

gued the importance of reviewing inaccurate seasonal

forecasts to better understand the physical factors that

are important but not accounted for in the prediction.

Thus CSU, CPC, and TSR issue end-of-season verifi-

cations that review how the predictions compared to

what was observed and how the atmospheric conditions

affected what actually happened. Furthermore, at some

point, seasonal forecasts may simply fail because there

are limits to the predictability of the climate system,

which is nonlinear. Thus, relationships may work well

over a certain period of time but will, eventually, fail.

Nevertheless, forecasts have shown improvements over

climatology, but more skill is needed further in advance

of the hurricane season. Forecasts in August (already

2 months into the season) have shown skill compared

with a 5-yr running average climatology, and these

predictions are still useful as 90% of Atlantic tropical

cyclone activity occurs after 1 August (Gray et al. 1993).

However, forecasts made before the start of hurricane

season have shown little skill (Blake et al. 2010), with

improvements ranging between 9% and 20% for mean

absolute error (MAE) and between 10% and 17% for

root-mean-square error (RMSE) for the period 2001–13

over the 5-yr running average climatology (see Fig. 4,

described in greater detail below).

Owing to the decadal variability and predictable long-

range signals of hurricanes, the purpose of this study is

to develop a new statistical model (henceforth referred

to as theUniversity of Arizona, or simplyUA,model) to

forecast seasonal Atlantic hurricane activity by the start

of the hurricane season (1 June) each year that signifi-

cantly improves the MAE and RMSE over a 5-yr run-

ning mean climatology. This research considers new

predictors as well as commonly used ones in different

ways to produce a unique and innovative model. In

particular, because of the observation that sea surface

temperatures in the Pacific Ocean can be more or less

correlated with the number of hurricanes depending on

the phase of the Atlantic multidecadal oscillation

(AMO) (see section 2), this study uses the multivariate

El Niño–Southern Oscillation (ENSO) index (MEI)

conditioned on the AMO as a predictor. The perfor-

mance of the UA model will be compared against ex-

isting models for seasonal hurricane predictions.

2. Methodology

Data for the number of Atlantic hurricanes per season

are obtained from the Hurricane Research Division of

the Atlantic Oceanographic and Meteorological Labo-

ratory (AOML) (http://www.aoml.noaa.gov/hrd/tcfaq/

E11.html). Only hurricanes from 1950 to 2013 are con-

sidered. In the presatellite era (before 1966), the possi-

bility exists of missed hurricanes in the record. Vecchi

and Knutson (2011) estimated that from 1950 to 1965,

the average number of hurricanes missed per year was

close to one in 1950 and was one-half in the early 1960s.

Because of the relatively small number of predicted

missed hurricanes each year and the uncertainty asso-

ciated with it, no adjustments will be made to the data.

As mentioned, the UA scheme is designed to produce

its prediction by 1 June as the inputs to the model do not

require data measured after 31 May. However, it is

possible that there may be a short lag of a few days be-

tween when the data recording finishes and when the

required input data are published by the responsible

organization. However, this delay in acquiring the input

data would cause only a short delay in producing the

prediction and is considered inconsequential, as nearly

all hurricane activity happens later in the season (Gray

et al. 1993).

The UA model uses a Poisson regression (i.e., the

regression between the logarithm of the number of

hurricanes and various predictors), following previous

studies (Elsner and Schmertmann 1993; Elsner and

Jagger 2006). This model ensures that the predicted

JUNE 2015 DAV I S ET AL . 731

http://blog.ametsoc.org/news/time-to-heed-the-hurricane-season-forecast/
http://blog.ametsoc.org/news/time-to-heed-the-hurricane-season-forecast/
http://www.aoml.noaa.gov/hrd/tcfaq/E11.html
http://www.aoml.noaa.gov/hrd/tcfaq/E11.html


number of hurricanes is greater than zero, which is an

advantage over using a linear regression.

The remainder of this section will describe the pre-

dictors and then finally present the model. The three

predictors specify conditions for Atlantic sea surface

temperatures (SSTs), the MEI conditioned upon the

AMO (denoted asMEI_AMO), and zonal pseudo–wind

stress (denoted as PWS).

a. SSTs

High SSTs are very important for hurricane formation

(Palmen 1948). The average of the March–May (MAM)

SSTs used for this model is taken from the Extended

Reconstructed SST, version 3b (ERSST.v3b; Smith et al.

2008; Xue et al. 2003). Figure 1 shows the correlation of

SSTs with the number of North Atlantic hurricanes for

several approximately 30-yr periods, starting with 1950–

79. The correlations are positive in every period

between northeastern South America and western Af-

rica where easterly waves can develop into hurricanes.

This area of high correlation often extends around the

North Atlantic in a crescent shape to southeastern

Canada. In the middle of the aforementioned crescent

is a persistent area of negative correlation that typically

lies near the eastern coast of the United States. The

results resemble the AMO pattern as given in

Goldenberg et al. (2001), or the first rotated EOF of

non-ENSO global SST variability.

The results from Fig. 1 show the complexity of the

North Atlantic SSTs in relation to hurricane de-

velopment, even in regions that do not directly influence

hurricane activity. Smirnov and Vimont (2012) showed

that SSTs in the subtropical Atlantic propagate, during

peak hurricane season, into the tropical Atlantic.

Figure 1 shows that MAM SSTs in the high-latitude

North Atlantic that have no direct influence on hurricane

FIG. 1. (a)–(d) Correlations of the MAM SSTs with the number of hurricanes for several approximately 30-yr periods and (e) the

Student’s t test values that are statistically significant at the 90% or higher level for the whole 64-yr period (without considering the year-

to-year autocorrelation of the time series). In (e), the box denotes the region (08–208N, 648W–108E) used for averaging MAM SSTs.
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development correlate relatively highly with the number

of hurricanes, which may reflect the Atlantic meridional

mode (AMM; Chiang and Vimont 2004). However, the

SSTs in the middle North Atlantic are frequently nega-

tively correlated with the number of hurricanes. Figure 1

also shows that these correlations change from period to

period: locations that are positively correlated in one

period may be negatively correlated in another. For ex-

ample, between 1970 and 1999, SSTs across most of the

North Atlantic were positively correlated with the num-

ber of hurricanes except for a small area just off of the

eastern coast of the United States, but from 1960 to 1989

the negatively correlated area extended much farther

east. Thus, the correlation does not stay constant from

period to period in each region.

The fact that the correlation strength and sign change

for a region from decade to decade makes choosing the

right area for hurricane forecasting more difficult.

However, the region where SSTs are most consistently

correlated with the number of hurricanes lies in 08–208N,

648W–108E (indicated by the box in Fig. 1e), which is

along the track that easterly waves follow as they make

their way from North Africa. This area is contained

within the region defined for the AMM, consistent with

the results of Vimont and Kossin (2007). They found

that during the positive phase of the AMM, the condi-

tions are more conducive to tropical cyclone activity,

because of warmer SSTs, lower sea level pressures, and

less vertical wind shear.

The average MAM SSTs of this area have a moderate

correlation with the number of hurricanes each year

(0.41) from 1950 to 2013. To ensure that the UA model

uses the most appropriate predictor, SSTs for individual

months were also compared with theMAM SSTs. Using

the average SSTs for any of the MAM months in-

dividually yielded MAE values all within 0.11 of each

other, but using the average of all MAM months to-

gether yielded the most predictive power by minimizing

the MAE.

b. ENSO

Another common predictor is ENSO. There are fewer

hurricanes during El Niño years than La Niña years

because the vertical wind shear over the Caribbean and

equatorial Atlantic is much higher during El Niño con-

ditions (Gray 1984), as well as generating increased

static stability over the hurricane main development

region (Tang and Neelin 2004). One index used to rep-

resent this oscillation is the MEI, calculated as the first

principal component of six variables over the tropical

Pacific: sea level pressure, zonal and meridional com-

ponents of the surface wind, sea surface temperature,

surface air temperature, and cloud fraction (Wolter and

Timlin 1993). The MEI was chosen over other ENSO

indices, such as Niño-3.4, because it reduced both the

MAE andRMSE themost in themodel. TheApril–May

value of the MEI is used because it is the latest value

available if a seasonal forecast is to be made by 1 June.

Overall, the April–May value shows a weak negative

correlation with the number of hurricanes (20.10) be-

tween 1950 and 2013; however, this correlation changes

through time. Figures 2a and 2b show that there are

periods when theMEI and the number of hurricanes are

positively correlated (1955–80 and from 2000 to pres-

ent), but also years when they are negatively correlated

(1950–55 and 1980–2000). The 10-yr running correlation

between April–May MEI and the number of hurricanes

clearly shows this multidecadal variation (Fig. 2b).

Hence, MEI is not strongly correlated for the entire

period from 1950 to 2013 because its correlation with the

number of hurricanes is sometimes positive and some-

times negative.

To make use of this multidecadal variation to predict

seasonal Atlantic hurricane activity in the UA model, a

condition that tempers or magnifies ENSO effects on

hurricanes must be found. Klotzbach (2011) showed that

the AMO, which measures the North Atlantic SSTs and

has its own multidecadal oscillation, can have this effect

because background conditions are more favorable for

hurricane formation with a positive AMO. Taking only

the years when theMay unsmoothedAMO [http://www.

esrl.noaa.gov/psd/data/timeseries/AMO/; Enfield et al.

(2001) for the smoothed version] is positive, the number

of hurricanes and April–May MEI are weakly and pos-

itively correlated (0.13). When the May AMO is nega-

tive, however, there is a stronger negative correlation

between April–May MEI and the number of hurricanes

(20.46). Hence, to incorporate these effects into our

model, whenever theMayAMO is positive, MEI_AMO

is set to zero, and when theMayAMO is negative,MEI_

AMO is set to the April–May MEI value. This adjust-

ment increases the negative correlation between MEI

and the number of hurricanes from 20.10 to 20.26 for

the period 1950–2013.

c. Zonal pseudo–wind stress

Zonal pseudo–wind stress is defined as the magnitude

of the wind multiplied by the wind vector in the zonal

direction and is proportional to the surface wind stress

(Smith et al. 2004). It is used here for two reasons: it

affects the horizontal and vertical distribution of ocean

temperature, and it is also highly correlated with sea

level pressure—and low sea level pressure is needed for

hurricane development (Knaff 1997). For instance, us-

ing the NCEP–NCAR reanalyses (Kalnay et al. 1996),

the average sea level pressure and average zonal
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pseudo–wind stress have a correlation coefficient

of20.66 over the domain in Fig. 3 for the month ofMay.

Figure 3 shows the spatial correlation between zonal

pseudo–wind stress and the number of hurricanes for

1950–2013 using the International Comprehensive

Ocean–Atmosphere Data Set (ICOADS; http://www.

esrl.noaa.gov/psd/) 28 zonal pseudo–wind stress data for

May. The area of greatest correlation lies in 188–398N,

48–988W, and this area (indicated by the box in Fig. 3) is

used for our model.

However, when used as a predictor, the zonal

pseudo–wind stress is raised to the 3/2 power because

the turbulent dissipation rate in the ocean mixed layer

is proportional to the 3/2 power of wind stress (Kraus

and Businger 1994). Since zonal pseudo–wind stress

can be positive or negative, this is computed by multi-

plying the absolute value of the zonal pseudo–wind

stress raised to the 3/2 power by the original sign of the

zonal pseudo–wind stress. The correlation between

zonal pseudo–wind stress and the number of hurricanes

increases from 0.29 to 0.31 when raised to the 3/2 power.

Also, with just the zonal pseudo–wind stress itself for

PWS in Eq. (1), MAE is 1.56 and RMSE is 1.99 from

1950 to 2013. However, when the stress is raised to the
3/2 power for PWS, MAE and RMSE decrease to 1.48

and 1.91, respectively.

d. Functional form of the UA model

With all variables defined as above, the UAmodel for

the period 1950–2013 is

Hurricane No. 5 exp(214:861 0:65SST2 0:23MEI_AMO1 0:01PWS), (1)

where SST represents the average MAM SST (8C) over
the region defined by 08–208Nand 648W–108E (indicated

by the box in Fig. 1e), MEI_AMO represents the April–

May MEI conditioned upon the AMO index (as de-

scribed in section 2b), and PWS is the averageMay zonal

pseudo–wind stress for the region defined by 188–398N
and 48–988W(indicated by the box in Fig. 3) raised to the
3/2 power. The coefficients are determined by fitting a

Poisson regression using all data available from 1950 to

2013 and are all statistically significant at the 0.01 level.

FIG. 2. (a) The MEI and number of hurricanes and (b) their running 10-yr correlations using

all data from 1950 to 2013 (correlation computed by taking the 5 yr after and the 4 yr before the

year shown). The brown-colored points are statistically significant at the 90% level.
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For the different tests below, these coefficients will be

different as we change the time period tested. In addi-

tion, each seasonal hurricane prediction made is

rounded to the nearest integer.

Overall, Eq. (1) predicts the number of Atlantic hur-

ricanes with an MAE of 1.48 and an RMSE of 1.91. The

variable with the biggest impact is SST. When it is

withheld and all other values are retained, MAE and

RMSE increase by 0.52 and 0.64, respectively. The next

most impactful variable is PWS. When it is left out,

MAE andRMSE increase by 0.33 and 0.38, respectively.

Finally, MEI_AMO is the least impactful, with a dif-

ference of 0.22 in MAE and of 0.20 in RMSE.

3. Results

For the 1950–2013 period, the UA model prediction

using Eq. (1) by 1 June each year is found to be exactly

the same as the observed hurricane number for 19% of

the years, and off by11 or21 for 44% of the years. The

absolute errors are $2 for 38% of the years. The fitted

values have a correlation coefficient of 0.71 with the

observed number of hurricanes.

a. Comparison with other models

The UAmodel shares many of the same predictors as

other models (e.g., the CSU model), such as SST and

ENSO, but still remains distinct in its exact model

structure. Most importantly for maintaining multi-

decadal skill, theUAmodel conditions ENSOonAMO.

First, we compare our model with three others (TSR,

CSU, and CPC) for the common period of 2001–13, a

challenging period for hurricane prediction. Note that

we are comparing official predictions issued by early

June, regardless of when the prediction was actually

prepared. It is possible that some of these organizations

prepare their predictions several weeks in advance but

do not officially issue them until early June.

The TSR model uses the forecasted July–September

trade wind speed over the Caribbean and tropical

North Atlantic as well as the forecasted August–

September tropical North Atlantic SSTs (http://www.

tropicalstormrisk.com/). The CSU model uses four

predictors for their June forecasts: SSTs in the equato-

rial Pacific forecasted for September by the European

Centre for Medium-Range Weather Forecasts

(ECMWF) on 1 May, April–May SSTs in the eastern

North Atlantic, April–May 200-mb zonal wind in the

tropical Pacific, andMay sea level pressure in the central

North Atlantic (http://hurricane.atmos.colostate.edu/

Forecasts/). CPC issues its prediction range (with a

70% chance) based on climate factors that influence

hurricane activity, along with the predictions of models

(http://www.noaanews.noaa.gov/stories2014/20140807_

hurricaneoutlook_atlantic_update.html). Also, since

CPC only issues a range, we used the midpoint of their

range to compare with the official predictions of other

groups. This could mean the prediction is a noninteger

if their range was an odd number. Because the TSR,

CSU, and CPC models all use model predictions and

observations in their predictions, it is probably appro-

priate to classify them as statistical–dynamical hybrid

models. For a fair comparison with other models, we

recalibrate the coefficients in Eq. (1) each year using

data only available prior to that year’s hurricane season.

Note that besides the 1 June hurricane number evalu-

ated here, CPC, CSU, and TSR also make many other

hurricane-related predictions (e.g., Accumulated Cy-

clone Energy, number of major hurricanes, and number

of named storms at several different lead times) for the

North Atlantic.

Figure 4 compares the predictions using the UA

model and these three models as well as the climatology

prediction (based on the average number of hurricanes

from the previous 5 years). Note that predictions given

by CSU, TSR, and CPC represent their predictions for

those years, not necessarily what their current models

would predict. The 2001–13 period is used because all

three organizations posted numeric forecasts beginning

in 2001 (before 2001, CPC simply predicted how the

season should compare to climatology without issuing

any actual numbers). Since the variables of the UA

model were chosen using data for the whole period, in-

cluding 2001–13, it is possible there may be some deg-

radation of skill for future predictions. Likewise, it is

FIG. 3. The correlation of zonal pseudo–wind stress with the

number of hurricanes from 1950 to 2013. The white areas in the

ocean are locations that do not have data for the whole period.

The box denotes the region (188–398N, 48–988W) used for com-

puting the average stress.
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important to mention that hindcast skill does not always

translate to forecast skill in the future. Figure 4a (4b)

shows that MAE (RMSE) for the UA model improves

by 38% (39%) over the 5-yr climatology prediction, and

MAE (RMSE) for the UA model improves by more

than 23% (more than 25%) over the other three models.

The number of years when the UA prediction is closest

to the observed number as compared to the other four

models (TSR, CSU, CPC, and climatology) is twice as

high as the number from climatology or TSR, while the

numbers from CSU and CPC are even lower (Fig. 4c).

The ratio of standard deviations of predicted versus

standard deviations of actual hurricane numbers is

closest to 1 (i.e., 0.74) from UA, indicating the most

realistic interannual variability of predicted hurricane

numbers from UA compared with the underdispersion

from climatology and the other three models (Fig. 4d).

Finally, the maximum absolute error is also lowest (i.e.,

5) for UA compared with the value of 7 for TSR, CSU,

and CPC, and 8 for climatology (Fig. 4e). These results

demonstrate the consistent improvements of the UA

model for June hurricane number forecasting over the

TSR, CSU, CPC, and climatology predictions based on

all five metrics.

The UAmodel is also compared to the full record of

June hurricane predictions produced by CSU. Like

the previous analysis, this again is a comparison with

what CSU predicted, not what their current models

would predict. The UA model again uses only data

available up to the hurricane season being predicted

(from 1950 throughMay of year predicted). TheMAE

for CSU for all predictions between 1984 and 2013 is

2.3, and for the UA model it is 1.93, representing a

16% improvement.

FIG. 4. Comparison of four models with the 5-yr average (the no-skill metric) for the period 2001–13: (a) MAE,

(b) RMSE, (c) the number of times when the model prediction is closest to the observation (note that if two or more

predictions tie on any given year, they are all deemed the closest), (d) ratio of the prediction std devs to the std dev of

the actual number of hurricanes, and (e) max absolute error. Note that the coefficients in the UA model were

recalibrated each year using data from prior years only to offer a fair comparison with other models.
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Kim and Webster (2010) created a hybrid model and

compared its hurricane number prediction with the CFS

hybrid forecast (Wang et al. 2009) and the ECMWF

forecast for the period 2002–09. The MAE for its June

forecasts (1.88) is much better than that (3.0) of the

ECMWF June forecasts and is even better than that

(2.0) of the CFS forecasts in July–August. The UA

model is found to yield exactly the same MAE as the

hybrid model of Kim andWebster (2010) for this period.

b. Robustness of the UA model

North Atlantic hurricanes show strong decadal vari-

ability. Figure 2a shows a period of high activity around

1950, a decrease in activity through the early 1990s, an

increase in activity until the 2000s, and finally another

decrease in activity through the most recent years. Be-

fore 1980, there was also relatively little year-to-year

variability (with a standard deviation s 5 2.2 for hurri-

cane numbers per year). However, the variance has been

much higher since 1980, with s 5 3.1 for hurricane

numbers. Between 1990 and 2005, hurricanes varied

quite widely from the mean climatological value of six.

TSR, CSU, and CPC have been able to improve

upon a 5-yr climatology prediction, especially for Au-

gust forecasts (Blake et al. 2010). However, the June

forecasts have at times had large errors since the late

1990s. A robust model should be able to show skill for

both the less variable pre-1980 period and the more

variable post-1980 period using each period to initialize

the model for the other.

To test the robustness of theUAmodel, we first divide

the whole period into a 1950–80 period and a 1981–2013

period because of the difference in the dispersion of the

number of hurricanes for these two periods. For the year

1980, the 1981–2013 data were used to train the model

and thus issue a prediction for 1980 using the data from

the spring of 1980. Next, recalibrating the model with

data from 1980 to 2013, a prediction was made for 1979,

and so forth going backward until 1950. For predictions

for 1981, the 1950–80 period was used to train themodel.

Again, data from the spring of 1981 were used to predict

the number of Atlantic hurricanes for 1981, and the

model was recalibrated using data from 1950 to 1981 to

predict for 1982, and so forth. This method, though still a

hindcast, simulates real-time predictions to a large de-

gree because it only uses data available up to that point

(or after that point in terms of the backward-focused

1950–80 period, which was done simply as a sensitivity

test and has no practical application). There are still

some differences between a real-time prediction and a

hindcast, since the variables of the UA model were

chosen using data for the whole period from 1950

to 2013.

Table 1 shows the UA model prediction capabilities

during the 1950–80 and 1981–2013 periods using MAE

andRMSE. It also compares theUAmodel for the fitted

values [i.e., using Eq. (1) for the whole period]. As ex-

pected, both the UA and the climatology approach have

smaller MAEs and RMSEs for the less volatile 1950–80

period. For instance, the MAE ratio of the climatology

approach for 1950–80 versus for 1981–2013 is

1.97/2.55 5 0.77. In other words, the same climatology

approach performs 23% better for 1950–80 than for

1981–2013. For the 1950–80 period, the UA model

shows an MAE improvement of 21% relative to the

climatology. For the more variable 1981–2013 period

when the climatology approach works less well, the UA

model shows a greater improvement over climatology,

as its MAE is 27% lower than the climatology.

The robustness of the UAmodel was further tested by

training the predictors during the period 1950–2013 and

then performing an independent test on the period

1900–49. This is necessary because a model would be

biased if all the data are used to screen predictors

(DelSole and Shukla 2009). It should be noted that the

uncertainty in the hurricane record increases in this

presatellite era. Hurricanes not close to land or weather-

reporting ships would not be included in the presatellite

historical record. Vecchi and Knutson (2011) estimated

that on average two hurricanes were missed per year

around 1900, decreasing to about one by 1949. A local

maximum occurred in the early 1940s, where three

hurricanes may have been missed in 1941 because of a

predicted active period.

As explained, the UA model was initialized with data

from 1950 to 2013 and then predicted the number of

hurricanes from 1949 to 1900, but the test was done

twice, once using the data as it appears in the AOML

dataset, and a second time using the corrected data

provided by Vecchi and Knutson (2011). This method

simulates a real-time forecast (albeit going from 1949 to

TABLE 1. A comparison between climatology (based on the

average hurricane number of the prior 5 years) and the UA model

based on data available up to that point for predictions after 1980,

or data after that year if before 1981 (as described in the text). The

model is also compared using Eq. (1) for the whole period.

Model Climatology

Model

improvement (%)

1950–80 MAE 1.55 1.97 21

RMSE 1.92 2.57 25

1981–2013 MAE 1.85 2.55 27

RMSE 2.28 3.24 30

Full period

using Eq. (1)

MAE 1.48 2.27 35

RMSE 1.91 2.93 35
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1900, instead of from 1900 to 1949) because the model

was recalibrated after each prediction, incorporating

each year after the prediction was made (using the same

method described above). The results were then com-

pared to a running 5-yr average in terms of MAE

and RMSE.

Using the uncorrected data, theMAEs are 2.04 for the

UA model and 1.90 for the 5-yr average, respectively,

while the RMSEs are 2.51 and 2.56. When the corrected

data from Vecchi and Knutson (2011) are used, the UA

model’s performance is improved, with an MAE of 1.84

and an RMSE of 2.39. This is also better than the 5-yr

average (with an MAE of 2.00 and an RMSE of 2.57).

c. Forecasting range

Because of the chaotic nature of the atmosphere and

oceans, it is useful to provide a range for hurricane

counts to complement the deterministic predictions.

The standard approach would be to add 61.97 (with

s 5 1.97 being the standard deviation of forecasting

errors from 1950 to 2013) to the unrounded de-

terministic predictions. The upper bound is then

rounded up and the lower bound is rounded down. The

range calculated in this way captures 84% of the actual

hurricane counts (Fig. 5).

The question is then: can we compute the range that

varies from year to year, with an average range similar to

that in the above approach, but which captures at a

higher rate the true number of hurricanes?Motivated by

our prior study (Zeng et al. 2012), here we explore two

new methods. The first method is the same as the above

approach but using the standard deviation of model er-

rors for years with positive May AMO (s 5 2.39) and

s5 1.45 with negativeMayAMO. The ranges using this

method vary between 3 and 6 from 1950 to 2013 (Fig. 5),

which is comparable with other models, as shown by

Vecchi and Villarini (2014). Its average range of 4.9 is

the same as the simple standardmethod, but this method

captures 89% of the actual hurricane counts (compared

with 84% for the standard approach).

In the secondmethod, years (from 1950 to 2013) when

the model forecasting error is greater than one are

identified. Another Poisson regression is repeated for

those years only, and it is then applied to the entire

period to define the upper bound for the model after the

values are rounded up. To define the lower bound, years

with errors less than negative one are grouped

together, a regression is performed, and the coefficients

are applied to the whole period with the values rounded

down. The accuracy of this method is higher than the

standard method, as the actual number of hurricanes

falls within the computed range 94% of the time (Fig. 5).

The average range using this method (5.3) is slightly

higher than that of the standard method (4.9) and the

first method (4.9), because the range reached 7–9 for 4

out of the 64 years. If the average range (4.9) of the

FIG. 5. The upper and lower limits of the prediction ranges, the actual yearly predictions

(green crosses), and the actual number of hurricanes (gray circles) for the year. Method 1 was

created by adding and subtracting one std dev based on the sign of the May AMO. Method 2

was created by using separate regressions for the upper and lower bounds (see more discussion

in the text). The standard method was created by adding/subtracting one std dev of the

forecasting errors.
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standard method is increased to match that of our sec-

ond method (5.3), it would capture the actual number of

hurricanes for 92% of the time, which is still lower than

that of our second method (94%).

Eachmethod has certain advantages. For the standard

method, it is the simplest and reasonably accurate (as

indicated by the percentage of actual hurricane numbers

covered by the predicted range). The first new method

remains simple but slightly more difficult than the

standard method, maintains relatively small ranges, and

is more accurate. The second new method (triple re-

gression) is the most accurate, but has a slightly larger

average range than the above two methods.

Other models also produce range estimates. TSR uses

the standard deviation of errors in replicated real-time

forecasts from 1980 to the year before the prediction.

Their June range has lately been about six (http://www.

tropicalstormrisk.com/). The range of the CPC pre-

diction is small, typically about three, and it is supposed

to capture 70%of observations.However, theCPC range

has only captured 31% of the actual hurricane numbers

since 2001 (http://www.noaanews.noaa.gov/stories2014/

20140807_hurricaneoutlook_atlantic_update.html). CSU

issues their forecast uncertainties as one standard de-

viation of the 1982–2010 cross-validated hindcast errors

(http://hurricane.atmos.colostate.edu/Forecasts/2014/

june2014/jun2014.pdf).

d. UA model forecasting in 2014

The first actual prediction using theUAmodel was for

the 2014 hurricane season. It was widely hypothesized in

preseason forecasts that 2014 would have relatively little

tropical cyclone activity in the Atlantic basin. The CPC

projected a 70% chance of a below-normal season

(having between three and six hurricanes) as a result of

1) the likelihood of an El Niño developing, 2) below-

average SSTs in theAtlantic, and 3) increased atmospheric

stability (http://www.noaanews.noaa.gov/stories2014/

20140807_hurricaneoutlook_atlantic_update.html). CSU

also predicted that the season would be below average,

at first stating there would be three hurricanes, but

then raising the number up to four for their June forecast

(http://hurricane.atmos.colostate.edu/Forecasts/). TSR

projected the season to bemore active and predicted five

plus/minus three hurricanes (http://www.tropicalstormrisk.

com/).

Using the UA model as described above, a prediction

was made for the 2014 North Atlantic hurricane season.

The conditions for 2014 show relatively average SSTs for

the period; a positive May AMO, which eliminates the

ENSOvariable from themodel; and higher-than-average

pseudo–wind stress. Thus, the UA prediction for 2014

was five hurricanes. The predicted range is from three to

eight using the standard method, from two to eight using

the AMO-conditioned standard deviation method, and

from two to seven using the triple-regression method.

The deterministic number (five) is slightly below the

long-term average of six hurricanes. The actual number

of hurricanes for 2014 was six, which is covered by the

predicted ranges from all three methods.

4. Conclusions

We have developed a statistical model to make more

accurate predictions of the number of seasonal North

Atlantic hurricanes by 1 June of each year. The model

uses three different predictors: average MAM SSTs for

the region (08–208N, 648W–108E) over the Atlantic, the

April–May value of theMEI when theMay AMO value

is negative and zero when the value is positive, and the

average zonal pseudo–wind stress for the region (188–
398N, 48–988W) over the Atlantic raised to the 3/2 power.

Atlantic SSTs that are most consistently positively

correlated with the number of hurricanes lie in the re-

gion 08–208N and 648W–108E and the best predictions

come from using the average of MAM. This is the most

significant predictor of seasonal hurricane activity in

our method.

The April–May value of the MEI correlates in an

oscillatorymanner with the number of hurricanes.When

the May AMO value is negative, MEI more strongly

correlates with the number of hurricanes, but when the

AMO is positive, the correlation is only slightly positive.

The conditioning of the MEI on the AMO value is an-

other important reason for the success of our method.

Finally, the zonal pseudo–wind stress is used because

of its ability to affect the distribution of SSTs around the

ocean and its high correlation with sea level pressure

when both are taken over the region 188–398N, 48–988W
for the month of May. Raising the average zonal

pseudo–wind stress to the 3/2 power helps the model to

better capture the interannual variability of the hurri-

cane numbers.

Using a fitted regression line for the period of 1950–

2013, our model yields an RMSE of 1.91 and a correla-

tion coefficient of 0.71 when compared with the ob-

served number of hurricanes. Performing simulated

real-time hindcasts, compared with a no-skill metric

(or climatology prediction) based on a 5-yr running av-

erage, our model improves the MAE by 38% and the

RMSE by 39% for the period 2001–13. Compared with

predictions from TSR, CSU, and CPC, we see an im-

provement of at least 23% in MAE and at least 25% in

RMSE from 2001 to 2013. It is important to mention,

however, that hindcast skill does not always translate to

forecast skill in the future.
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The robustness of our model has been tested by ini-

tializing themodel using data from 1950 to 1980 (or from

1981 to 2013) for prediction during 1981–2013 (or 1950–

80). For these two periods, theUAmodel shows anMAE

improvement of 21% for 1950–80 and 27% for 1981–

2013 over the climatology prediction. Our model also

does a reasonable job of prediction using an independent

dataset (years 1900–49), beating the 5-yr running average

climatology prediction based on the corrected hurricane

number data from Vecchi and Knutson (2011).

We have also created two uncertainty ranges of the

predicted hurricane number for every season from 1950

to 2013 that better predicts the uncertainty than the

standard method of adding/subtracting a standard de-

viation of the errors. The first is using the standard de-

viation of forecast errors for positive (negative) May

AMO years and adding/subtracting the value to pre-

dictions with corresponding May AMO signs. The sec-

ond is rerunning a regression for errors greater (less)

than one (negative one) and using the new coefficients to

fit an upper (lower) bound. The first new method im-

proves upon the standard method by capturing the ac-

tual number of hurricanes 89% of the time (versus 84%)

from 1950 to 2013 while maintaining the same average

range. The second method further increases the per-

centage to 94% but has a slightly larger average range

(5.3) than the standard or first new method (4.9).

Future research should explore not only how to fur-

ther improve the accuracy of the predictions, but also

how to improve upon them with greater lead time. This

would be beneficial for those responsible for mitigating

human casualties and property damage, such as com-

munity groups, government agencies, and insurance

companies. Furthermore, improvement upon other

tropical cyclone intensity categories, such as all named

storms, tropical storms, and major hurricanes, in all

basins of the world, would also be beneficial.
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